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Abstract : In this paper analyzed the Arbitrage Pricing Theory with lagged, Value-at-Risk and asset allocations 

by using economic approach. It is assumed that stocks were analyzed following the model of Arbitrage Pricing 

Theory with lagged. Where the factor risk premium in the past affects the present changes in stock return. The 

return of factor is assumed to have non constant volatility and there is effect of long memory. Long memory 

effects are estimated using the rescaled range method (R/S) or Geweke and Porter-Hudak (GPH) method. The 

mean and non constant volatility is estimated using ARFIMA-GARCH models. The portfolio risk level is 

measured by the Value-at-Risk (VaR). Asset allocation problem solving carried out using the Lagrangian 

multiplier technique and the Kuhn-Tucker method. The purpose of this research forms the efficient portfolio and 

determines optimal portfolio weights. Empirical research conducted on some stocks that are traded in capital 

markets in Indonesia. 

 

Keywords: APT, ARFIMA, GARCH, Value-at-Risk, Asset Allocation. 

 

Abstrak. Dalam paper ini dianalisis Arbitrage Pricing Theory dengan lagged, Value-at-Risk, dan alokasi aset 

dengan menggunakan pedekatan ekonometri. Diasumsikan saham-saham yang dianalisis mengikuti model 

Arbitrage Pricing Theory dengan lagged. Di mana premi risiko faktor pada masa lalu berpengaruh terhadap 

perubahan return saham masa sekarang. Return faktor diasumsikan memiliki volatilitas tak konstan dan terdapat 

efek long memory. Efek long memory diestimasi  menggunakan metode rescale range (R/S) atau Geweke dan 

Porter-Hudak (GPH). Rata-rata dan volatilitas tak konstan diestimasi menggunakan model-model ARFIMA-

GARCH. Tingkat risiko portofolio diukur berdasarkan Value-at-Risk. Penyelesaian masalah alokasi aset dilakukan 

menggunakan teknik Lagrangian multiplier dan metode Kuhn-Tucker. Tujuan penelitian ini membentuk 

portofolio efisien dan menentukan bobot portofolio optimum. Penelitian secara empiris dilakukan pada beberapa 

saham yang diperdagangkan dalam pasar modal di Indonesia. 

 

Kata Kunci: APT, ARFIMA, GARCH, Value-at-Risk, Alokasi Aset. 
 

 

1. Introduction  
 

 Formulation of Arbitrage Pricing Theory (APT) has important implications in determining 

stock prices [11]. It’s stated that the return of a stock (or portfolio) will be affected by one or several 

explanatory variables (factor index). However, APT does not mention (explicitly) what variables 

affect the stock return. To determine the factors that influence the degree of sensitivity and magnitude 

of asset returns to each factor, is to set a number of factors that allegedly had an influence on stock 

return [7; 11]. These factors include the industrial variables (egg market index, alternative products, 

etc.) and economic variables (egg inflation, interest rates, etc.) [10; 11]. 

APT applies the law of one price, in equilibrium, the relationship between risk and stock return 

occurs in one area (if there is more than one factor). This situation can be achieved through a process 

of arbitrage. Arbitrators will cause all the portfolio is located in one and the same area [7; 11]. The 

location of each portfolio will be determined by the proportion (weight) of funds invested in the 

establishment of a portfolio [7; 8]. Determination of the proportion (weight) portfolio is a problem 

that should be sought the solution. To determine the proportion (weight) can be conducted using a 
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portfolio optimization [9; 12; 15; 17]. The composition obtained proportions will affect the return 

expectations and risk portfolio [2; 7; 15]. Highly popular portfolio risk is measured using a Value-at-

Risk (VaR) [1; 3; 4; 6; 20]. 

In this paper, the formulation of APT as a means of determining the stock price will be 

expanded by considering the factors of lagged. Where the factors in that last period is assumed to influence the 

formulation of APT. The return of factors in APT is assumed to have non constant volatility and there is 

an effect of long memory. Non constant volatility and long memory effect will be analyzed using 

ARFIMA-GARCH models [14; 16; 18; 21; 22]. The mean and variance of returns of stocks estimated 

based on the APT with the lagged, which has non constant volatility and long memory effects. Using 

the mean estimator and the variance will be arranged the problem of Asset allocation. Asset allocation 

is based on the mean-VaR approach [5; 8; 13; 19]. Settlement asset allocation problem based on 

Lagrangian multiplier techniques and methods of the Kuhn-Tucker [5; 7]. Thus the analysis 

could be performed, because many stocks have characteristics such as the discussion here. The aim is 

to establish an efficient portfolio and determine the proportion (weight) portfolio optimally. The 

empirical research carried out on a few stocks that are traded at the capital markets in Indonesia. 

 

2. Methodologies 
 

 Determining stock return. Let itP  and itr  denote the prices and the returns of stock i  

( 1,...,i N and N is the number of stocks that are analyzed), respectively, at the time t  ( 1,...,t T , 

T  denotes the period of data observation). Stocks return itr  is calculated using the 

formula 1ln( / )it it itr P P  . Let jtF  and jtr  respectively denote the price and the return of factor 

index j  ( 1,...,j M  and M is the number of factors index in the APT), at the time t , 1,...,t T . In 

the same way to calculate itr , the factors index return jtr  are calculated by 1ln( / )jt jt jtr F F  [6; 

21]. 

 
 

2.1  Mean Modeling  

 

 In the next stage we identify the existence of long memory effect in the data return of factor 

index using the rescale range method (R/S) or Geweke and Porter-Hudak (GPH) method. The 

parameter estimation of fractional difference index jd , 1,...,j M , is performed using the maximum 

likelihood method [14; 16; 21; 22]. The confidence interval (1 )100%c  for jd  is 

/2.
jj c d jd z d    /2.

jj c dd z  where jd  denotes estimator of jd , and cz  denotes the 

percentile of standard normal distribution at the significance level c . Let 
jd   and  

jd  respectively 

denote the mean and standard deviation of jd . We can test the null hypothesis 0 : 0jH d   against 

1 : 0jH d   using statistic   ( ) /
j j jd j d dz d    . We reject 0H  if the value /2jd cz z  or 

1 /2jd cz z   [16; 21]. 

 Fractional difference process is defined as: 

 (1 ) jd
jt jtB r a  , 0.5 0.5jd   ;                                                    (1) 

where { }jta  is the error component which is the white noise process, and B  denotes the backshift 

operator? If the sequence of fractional difference (1 ) jd
jtB r  is following the model of 

ARMA( ,p q ), then we call jtr  autoregressive fractionally integrated moving average degree p , d  

and q  process, or ARFIMA( , ,p d q ) [16; 21; 22].  The ARMA( ,p q ) follows the following form 
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0 1 1

p q
jt j jg jt g jt jh jt hg h

r r a a    
     ,                                     (2) 

with 0j  constant and jg  ( 1,..., )g p  and jh  ( 1,..., )h q  the parameter coefficients of mean 

model of factors index return j , 1,...,j M . We assume that { }jta  is the error sequence of white 

noise process with mean zero and variance  2

ja
  [20; 21; 22]. 

 Stages of mean modeling process include: (i) Identification of the model, (ii) parameters 

estimation, (iii) diagnostic tests, and (iv) Prediction [21]. 

 
 

2.2  Non Constant Volatility Modeling  

 
  

 The non constant volatility of the returns of factor index is modeled using generalized 

autoregressive conditional heteroscedastic (GARCH) models. Suppose jt  and 2
jt  respectively 

denote the mean and non constant volatility of return of factor index j  ( 1,...,j M and M  denotes 

the number of factors index in the APT), at the time t  ( 1,...,t T  and T is the period of data 

observation). The error jta  can be calculated as jt jt jta r    [21; 22]. The non constant volatility 

2
jt will follow the GARCH model of degree m  and n  or GARCH( ,m n ), if 

jt jt jta   ,
2 2 2

0 1 1

m n
jt j jk jl jtjt k jt lk l

a     
  

     .                          (3) 

where 0j  is a constant and jk ( 1,..., )k m  and jl  ( 1,..., )l n  denote the parameter coefficients 

of non constant volatility model of factor index return j  ( 1,...,j M ). Here we assume { }jt is the 

sequence independent and identically distribution (iid) random variable with mean zero and variance 

1, 0 0j  , 0jk  , 0jl  , and 
max( , )

1
( ) 1

m n
jk jkk

 


   [21; 22].  

 The stages of non constant volatility modeling include: (i) The estimation of mean model, (ii) 

Testing the effect of ARCH, (iii) Model identification, (iv) Non constant volatility model estimation, 

(v) Diagnostic test, and (vi) Prediction [21].  

 We further use the mean model (2) and the non constant volatility model (3), to 

calculate (1)jt jTr   
2 2 (1)jt jT

  , i.e. the 1-step ahead prediction after time period  T of the mean 

and the variance [21]. 

 
 

2.3 Modeling of Stock Return under APT with Lagged 

 
  

 In this section expand the APT to APT model with lagged. It is known that itr  the return of 

stock i  at the time t , and  jtr  returns the index factor j  at the time t . Suppose tr  is the risk free 

asset return at the time t  ( 1,...,t T and T  the period of data observation). APT regression model 

with lagged expressed as equation 

0 10 1 11 1 1 1 12 2 2 2 1 1( ) ( ) ( ) ... ( ) ...it t i i t t i t t i t t i L t L t Lr r r r r r r r r r                      

 20 2 21 2 1 1 22 2 2 2 2 2( ) ( ) ( ) ... ( ) ...i t t i t t i t t i L t L t Lr r r r r r r r                   

            0 1 2 1 1 2 2 2 2( ) ( ) ( ) ... ( )iM Mt t iM t t iM t t iML Mt L t L itr r r r r r r r u                  , 

or it can be written into 

 0
1 0

( )
M L

it t i ijl jt t it
j

r r r r u 


   
 

      .                                  (4) 
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 Assumed that { }itu  is the white noise of regressions residual [7; 11]. Where 0i  and ij    

( 1,...,i N ; 1,...,j M ; 0,...,L   and L  is length of lagged), respectively declare constants and 

parameter coefficients of regression for the APT with lagged of stock return i  at the time t . To 

estimate the constant 0i  and parameter coefficients ijl  regression of equation (4) can be 

performed using the least squares method. Length of lagged estimated based on the Ad-Hoc method, 

namely by looking at the consistency changes of parameter coefficients sign, positive (+) continue or 

the negative (-) continued, when lagged extended. Referring Blume in 1971, the ability of the index 

factors explain changes in individual stock returns ranging between 25%-51% rate coefficient of 

determination [7]. 

  As previously described, jt  and 
2
jt  successively states the mean and variance of the index 

return factor j  at the time t . Suppose that t  and 
2
t , in succession states mean and variance of 

return risk-free asset. Based on the equation (4), the mean stock return i  at the time t , which it  can 

be estimated using the following equation: 

0
1 0

( ) ( )
M L

it it t i ij jt t
j

E r   


      
 

      .                            (5) 

It is assumed that ' ' '[( ),( )] 0jt t j t tE r r r r          , where , ' 1,...,j j M , 'j j  and 

, ' 0,..., L   , '  . Stock return variance i  at the time t , that 
2
it  can be estimated using the 

equation 

2 2 2 2 2 2

1 0

( ) ( )
it

M L

it it t ij jt t u
j

Var r   


     
 

 

      .                          (6) 

Where 
2 ( )
it

itu
Var u  the regressions residual variance of APT with is lagged of stock return i at the 

time t . Based on the assumptions in equation (6), covariance between stock i  with stock 'i , which 

are stated to 'ii  be estimated with equation 

2 2
' ' '

1 0

( , ) ( )
M L

ii t it i t ij i j jt t
j

Cov r r    


    
 

 

    ; 'i i .                     (7) 

 Estimator mean, variance and covariance of stock return i  ( 1,...,i N and N the number of 

stock that were analyzed), at the time t  ( 1,...,t T and T  the period of data observation), then used 

for the following portfolio formation. 

 
 

2.4 Asset Allocation Based on Mean-VaR  

 
 

 Let tr  denote the return of portfolio at the time t , and iw  ( 1,...,i N ) weight of stock i . 

Return of portfolio tr  can be determined using the equation [7; 13]: 

1

N
t i iti

r w r


 ; Terms
1

1
N

ii
w


  and 0 1iw   ( 1,...,i N ).                             (9) 

 Suppose 1(  ... )T
t it μ , 1,...,i N  is the mean vector, and 1(  ... )T

Nw ww  the weight 

vector of portfolio. From equation (9), the  weight 
T

w follows the property 1T e w , where 

(1 ... 1)Te . The mean of portfolio return t  can be estimated using the equation: 

1

N T
t i iti

w 


  μ w .                                                            (10)  
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The variance of portfolio return 2
t  can be estimated using the equation: 

2 2 2
' '1 1 '

;  '
N N N T

t i it i i iii i i
w w w i i  

 
      w Σw .                             (11) 

where ' '( , )ii it i tCov r r   denotes the covariance between stock i  and stock 'i  [17].  

 Value-at-Risk (VaR) of an investment portfolio based on standard normal distribution approach 

is calculated using the equation [13; 19]: 

1/2
0 0( ) { ( ) }T T

t t c t cVaR W z W z      w μ w Σw .                                (12) 

where 0W the number of fund is allocated in the portfolio and zc  is the percentile of standard normal 

distribution at the significance level c . When it is assumed 0 1W   unit, the equation (12) becomes: 

1/2( ) { ( ) }T T
t t c t cVaR z z      w μ w Σw .                                     (13) 

 A portfolio *w  is called (mean-VaR) efficient if there is no other portfolio w  with t t   and 

t tVaR VaR  [13]. To obtain the efficient portfolio, we used the objective function, to 

maximize{2 }t tVaR  , 0   where   denotes the investor risk tolerance factor. For the investor 

with the risk tolerance 0   therefore we must solve an optimization problem [13;  19]: 

1/2Maximize {2 ( ) }

                  such that 1

T T T
c

T

z  



μ w μ w w Σw

e w

.                                         (14) 

 Equation (14) is a quadratic concave optimization problem. Its Lagrangian function can be 

written as
1/2( , ) (2 1) ( ) ( 1)T T T

cL z      w μ w w Σw e w . Using the Kuhn-Tucker theorem, the 

optimal solution can be obtained using the first derivatives, as follows [5; 7; 19]: 

1/2/ (2 1) / ( ) 0T
cL z       w μ Σw w Σw e  and / 1 0TL     e w .                   (15) 

Solving the equation (15) as the function of  , we obtain the quadratic equation in   as 

1 2 1 1 2 1 2( ) (2 1)( ) {(2 1) ( ) } 0T T T T
cz            e Σ e μ Σ e e Σ μ μ Σ μ .  Let 

1TA  e Σ e , 

1 1(2 1)( )T TB     μ Σ e e Σ μ  and 
2 1 2(2 1) ( )T

cC z   μ Σ μ . The roots of quadratic equations 

can be calculated using the ABC formula as [19]: 

2 1/2{ ( 4 ) } / 2B B AC A     ; 0  .                                               (16) 

For 0  , we obtain the weight vector w as 

1 1

1 1

(2 1)

(2 1) T T

 

 

 

 

 


 

Σ μ Σ e
w

e Σ μ e Σ e
.                                                    (17) 

By substituting the vector w into the equation (10) we obtain the mean value of portfolio return. 

When vectors w are substituted into the equation (13), we obtain the value of the investment portfolio 

risk level tVaR . The sets of point pairs ( ,t tVaR ) form a graph of efficient frontier. Among the 

efficient frontier, there are optimum portfolios, which have the largest ratio /t tVaR  [19]. 

 

3.  Results and Analysis 
 

 

3.1 The Data 

 
 

 For empirical study, we analyze the following stocks: PT. Astra International Industry (ASII), 

PT. Turba Alam Manunggal Engineering (TRUB), PT. Bank Central Asia (BBCA), PT. Bank Rakyat 

Indonesia (BBRI), PT. HM. Sampoerna (HMSP), and PT. Telekomunikasi Indonesia (TLKM), and 

are denoted as 1S  until 5S . As the factors index, we use Composite Stock Price Index (IHSG), the 
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rate of inflation, exchange rate of the rupiah against the euro, the rupiah against the U.S. dollar, and 

the rupiah against the yen, and are denoted as 1F until 5F . For the risk-free asset data, we use a 

government bond price. The data are obtained from http://www.finance.go.id//. The period of 

observation is January 2, 2006 until December 30, 2010. The empirical analysis is done using the 

software’s: MS Excel 2007, Eviews 4, Maple 9.5 and R. 
 

 

3.2 Empirical Results 

 
 

 In this study, the factors index used are 1F until 5F , as described above. We first calculate the 

returns of each factor index, then identify the existence of the effects of long memory in the returns, 

and finally estimated the mean and volatility models of the returns. 

 Identification of the long memory effects. To identify the effect of long memory, we estimate 

the parameters of fractional difference jd  ( 1,...,5j  ) as in equation (1). The estimation is performed 

using the rescale range method (R/S) or Geweke and Porter-Hudak (GPH) method. The results are 

summarized in Table-1. 

 
Tabel-1. The Identification of the Long Memory Effects 

Stock d j  jd  Intervals  

Confidence 
z j  Effect of Long 

Memory 

1F  0.361 0.1462 0.075< 1d <0.648 5.86 Significant 

2F  0.263 0.1323 0.004< 2d <0.522 2.57 Significant 

3F  0.635 0.5853 -0.512< 3d <1.782 1.12 Not Significant 

4F  0.098 0.1731 -0.241< 4d <0.437 2.62 Significant 

5F  0.518 0.6312 -0.719< 5d <1.755 1.51 Not Significant 

  

 To ensure the existence of long memory patterns, we test the hypothesis 0 : 0jH d   against, 

1 : 0jH d  , 1,...,5j  . Statistic values calculated jz  ( 1,...,5j  ) are given in Table-1, while for the 

level of significance 0.95c  , from the standard normal distribution table values, we 

obtain 0.95/2 1.96Z  . Because of the values 1z , 2z  and 4z  are larger than the value 0.95/2Z , it is 

concluded that the test results are significant, the returns of factor index data, 1F , 2F  and 4F  have 

long memory effects. However, in 3F and 5F there are no long memory effects.  

 In the next step, we identify and estimate the best mean and volatility models to difference 

fractional jd  of the returns data 1F , 2F  and 4F , where for F3 and F5, the analysis is applied directly 

to the returns data. 

 Identification and estimation of mean models. Identification of the mean models is done using 

the sample autocorrelation function (ACF) and partial autocorrelation function (PACF). Based on the 

patterns of ACF and PACF of each factor index returns (or the fractional differenced data), we obtain 

the best models for F1 until F5, which also passed the standard diagnostic check. The results are 

summarized in Table 2. 

 Identification and estimation of volatility models. We further identify and estimate of volatility 

model using generalized autoregressive conditional heterscedasticity (GARCH) models. Based on the 

correlogram of quadratic residual 2
jta , we select the plausible volatility model for the data. Estimation 

of volatility models of each factors index return is done simultaneously with the mean models. The 

results, obtained for the best model which is also passed the diagnostic checks, are given in Tabel-2.  
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Table-2. The Estimation Results of Mean and Volatility Model of Factor Index Returns 

Factor 

( jF ) 

Model Mean and Volatility Equations 

1F  ARFIMA(1, 1d ,0)-

GARCH(1,1) 

1 1 1 10.111341t t tr r a   

2 2 2
11 1 1 1 1

0.00000866 0.137021 0.834528 tt t t
a  

 
     

2F  ARFIMA(1, 2d ,1)-

GARCH(1,1) 

2 2 1 2 1 20.993306 0.990698t t t tr r a a     

2 2 2
22 2 1 2 1

1.016328 0.447513 0.043462 tt t t
a  

 
     

3F  AR(1)-

GARCH(1,2) 
3 3 1 30.070772t t tr r a    

2 2 2 2
33 3 1 3 1 3 2

0.000000853 0.140811 0.300641 0.563666 tt t t t
a   

  
      

4F  ARFIMA(1, 4d ,0)-

GARCH(2,1) 

4 4 1 40.078681t t tr r a    

2 2 2 2
44 4 1 4 2 4 1

0.00000837 0.38691 0.478577 0.372516 tt t t t
a a  

  
      

5F  AR(1)-

TGARCH(2,1) 
5 5 1 50.094107t t tr r a    

2 2 2 2
55 5 1 5 2 5 1

0.000000467 0.280911 0.234836 0.951865 tt t t t
a a  

  
      

 

 

 Estimated regression model of APT with lagged. In this section estimation of APT model with 

lagged, conducted by estimating regression models of each of the five stock return data, against the 

data of return of the five-factor index. Estimation made refers to the equation (4), helped by Eviews 4 

software. The return of risk-free asset data (bond) is relatively constant, therefore, taken the mean size 

0.026462t   and variance 
2 0t  . To simplify the writing, for example 0.026462it itr   , 

1,...,5i  and the risk premium of factor index with the lagged 0.026462jt jtI r     ( 1,...,5j   

and 0,1,...,L  , where L length of is lagged). The results of APT regression with lagged estimates 

given in Table-3. Numbers written in parentheses under the regression coefficients are t-Statistic. The 

values of the coefficient of determination is given in the column 2Ri , whereas the values Darbin-

Watson Statistic are given in the column Stat- DW . 

 
Table-3. Regression Model Estimation Results of APT with lagged 

Samah 

( iS ) Regression Model  2Ri  
Stat-

DW  

1S  

1 1 1 1 1 2 2 3 3 1
(3.74) (17.91) (3.74) (1.65) ( 2.43) ( 3.42) ( 2.19)

4 4 1 5 5 1
(2.67) (2.45) ( 2.28) ( 2.09)

0.0251 1.4723 0.2994 0.1205 0.0005 0.5251 0.1840

 0.6843 0.1151 0.0535 0.0171

t t t t t t t
Stat t

t t t t

I I I I I I

I I I I

   
  

 
 

      

     1tu
 58.75% 1.944 

2S  

2 1 2 2 1 2 2 3 3 1
(1.66) (14.11) ( 1.83) ( 2.53) ( 2.31) (2.35) (2.25)

3 2 3 3 4 5
(3.25) (2.46) (2.58) ( 1.66)

0.0040 0.9429 0.0009 0.0006 0.0003 0.0442 0.1466

 0.0239 0.0432 0.1236 0.2557 0

t t t t t t t
Stat t

t t t t

I I I I I I

I I I I

   
  

 


      

     5 1 2
( 2.12)
.0110 t tI u



 47.79% 2.081 

3S  

3 1 1 1 2 2 1 3 4
(2.52) (19.10) (1.83) ( 1.90) ( 1.98) ( 2.55) ( 2.21)

4 1 5 3
( 2.06) ( 2.11)

0.0091 1.4491 0.1313 0.0011 0.0012 0.2223 0.0515

 0.0072 0.0190

t t t t t t t
Stat t

t t t

I I I I I I

I I u

  
   


 

      

  
 60.56% 1.963 

4S  

4 1 1 1 1 2 2 3 3 1
(2.26) (4.52) (1.65) (2.03) ( 2.22) ( 1.66) ( 1.70)

4 4 1 4 2 5
(2.51) (2.36) (1.91) (2.00)

0.0022 0.3894 0.0978 0.0822 0.0014 0.1061 0.2743

 0.1369 0.0966 0.2395 0.1977 0.2

t t t t t t t
Stat t

t t t t

I I I I I I

I I I I

   
  

 

      

     5 1 4
(2.09)

174 t tI u 
 48.50% 2.553 

5S  

5 1 2 3 4 5
( 2.14) (14.92) ( 1.80) ( 2.31) (2.04) (2.59)

5 1 5 2 5 3 5
(2.10) (1.66) (2.54)

0.0007 0.9196 0.0007 0.2695 0.0075 0.0840

 0.007 0.1067 0.0997

t t t t t t
Stat t

t t t t

I I I I I

I I I u


  

  

      

   
 46.66% 1.905 

  



Jurnal KALAM Vol. 4, No. 1, Page 35-45 

 

42 

 

  

As presented by Blume in 1971, the ability of the index factors to explain changes in 

individual stock returns ranging between 25% -51% rate coefficient of determination [7]. Looking at 

the results in Table-3, it appears that the coefficient of determination 
2
iR  of regression models of each 

stock worth nearly 51%. So for a regression of return or risk premium that has a coefficient of 

determination close to 51% was considered strong enough, as long as other diagnistik test statistic is 

significant [10]. Based DW statistic whose value is also relatively small, showing the five regression 

models in Table-3 is significant. It can also be shown the residuals itu of each regression model are 

normally distributed, with zero mean and variance 2

itu
 . Estimator value 2

itu
 of each regression 

equations are given in Table-4. Regression model is then used to estimate the mean and variance of 

stock return. 
 The estimated mean and variance values of stocks return. The values of constants, coefficient 

of parameters and regression of residual variance 
2

itu
  in Table-3, and the mean value estimator 

(1)jT jTr   and variance 
2 2 (1)
jT jT

  , then used to estimate the mean and variance values of 

stock return 1S  until 5S . The mean value estimated using equation (6), while the variance value is 

estimated based on equation (7). The estimation results are given in Table-4. 

 
Table-4. The Estimation Results of Mean and Variance of Stocks Return  

Stocks 

( iS ) 
2

itu
  it  2

it  

1S  0.000788 0.001876 0.001278 

2S  0.000536 0.002328 0.000732 

3S  0.000705 0.001835 0.001132 

4S  0.000852 0.000231 0.000929 

5S  0.000456 0.000797 0.000634 

 

 In this study assumed that the covariance between stock return i  and 'i  at the time t , ' 0ii t   

( , ' 1,...,5i i  and 'i i ), because its values are also very small close to zero. This means that between 

stock return i  and 'i  at the time t  where the cross correlation does not occur. The values of the mean 

estimator it and the variance 
2
it  will be used for the following portfolio optimization process. 

 Portfolio optimization. Portfolio optimization in this case is based on the mean-VaR model. To 

solve optimization problem is done by using the software of Maple 9.5. First, the values of the 

average estimator in Table-4 column it  is used to form the vector mean as 

 0.001867 0.002328 0.001835 0.000231 0.000797T μ . Second, referring to the number of shares to 

be analyzed as much as five, mean vector defined identity is  1 1 1 1 1T e . Third, the values of the 

variance estimator in Table-4 a column 
2
it  is used to form the covariance matrix Σ . Then 

determined the inverse of the matrix Σ , ie 1
Σ , as follows: 

 

0.00128 0 0 0 0

0 0.00073 0 0 0

0 0 0.00113 0 0

0 0 0 0.00093 0

0 0 0 0 0.000634

 
 
 
 
 
 
 
 

Σ  and 1

782.47 0 0 0 0

0 1366.12 0 0 0

0 0 883.39 0 0

0 0 0 1076.43 0

0 0 0 0 1577.29



 
 
 
 
 
 
 
 

Σ  
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 Risk tolerance   in this study are determined by simulation. Tolerance values together T
μ and 

T
e vectors and 1

Σ matrix, when substituted into equation (15) will be obtained multiplier value as 

 . Where then substituted into equation (16) will be obtained by portfolio weight vector w . Weight 

vector w , then used to calculate the mean value of portfolios using equation (10), and calculate the 

risk level of VaR using equation (13). For the values of risk tolerance 0 7.377  some calculation 

results are given in Table-5. 

 
Table-5. Risk Tolerance, Weight, Mean and Portfolio Risk 

  
Weight 

t  tVaR  t

tVaR


 

1w  2w  3w  4w  5w  

0.00 0.14083 0.25086 0.15870 0.17945 0.27015 0.001396 0.0204341 0.06832617 

0.50 0.14405 0.26148 0.16205 0.16954 0.26287 0.001425 0.0204485 0.06968778 

1.00 0.14730 0.27220 0.16542 0.15956 0.25552 0.001454 0.0204922 0.07095751 

1.50 0.15059 0.28304 0.16883 0.14945 0.24809 0.001483 0.0205657 0.07213373 

2.00 0.15393 0.29406 0.17230 0.13918 0.24053 0.001513 0.0206704 0.07321444 

2.50 0.15734 0.30531 0.17584 0.12869 0.23282 0.001544 0.0208077 0.07419726 

3.00 0.16084 0.31683 0.17947 0.11795 0.22491 0.001575 0.0209798 0.07507931 

3.50 0.16444 0.32871 0.18321 0.10688 0.21677 0.001607 0.0211892 0.07585733 

4.00 0.16817 0.34100 0.18707 0.09542 0.20834 0.001641 0.0214394 0.07652736 

4.50 0.17204 0.35379 0.19110 0.08349 0.19957 0.001702 0.0234100 0.07271306 

5.00 0.17610 0.36718 0.19531 0.07101 0.19039 0.001712 0.0220795 0.07752462 

5.50 0.18038 0.38127 0.19975 0.05787 0.18073 0.001750 0.0224812 0.07784036 

6.00 0.18491 0.39622 0.20446 0.43936 0.17048 0.001790 0.0229477 0.07802487 

6.404 0.18880 0.40903 0.20849 0.03199 0.16169 0.001825 0.0233789 0.07807227 
6.50 0.18975 0.41219 0.20948 0.29050 0.15953 0.001834 0.0234893 0.07806955 

7.00 0.19497 0.42939 0.21490 0.01301 0.14773 0.001880 0.0241196 0.07796420 

7.377 0.19920 0.44335 0.21929 0.000003 0.13816 0.001918 0.0246640 0.07777817 

 

For values of risk tolerance  7.377  is no longer feasible, because the portfolio weight does not 

qualify. 

  A collection of points ( t , tVaR ) to form the surface efficiently (efficient frontier), as shown 

in Figure-1. The ratio between t  and tVaR  values are given in Table-5 the last column. The values 

of these ratios can also be expressed as a graph given in Figure-2. 

  

  
Figure -1. Efficient Frontier of Portfolio Figure-2. Mean and VaR Ratio of Portfolio 

 

3.3 Discussion 

 
 

 Based on the calculation results given in Table-5, can be seen that with the risk tolerance of 

0.00 obtained VaR portfolio composition that produces a minimum, that is equal to 0.020434 with the 

expected return of portfolio amounted to 0.001396. The amount of risk tolerance can still be improved 

but with the condition that the resulting values of weighted portfolio of real 0 1iw   ( 1,...,5i  ) and 

qualify
5

1
1ii

w


 . In this case the value will be at most risk tolerance as 7.377  . Where the 

resulting composition of the portfolio with the highest expected return of portfolio that is equal to 
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0.0019183 with VaR at 0.024664. Any increase in the value of risk tolerance will cause the increase 

in expected return portfolio which is also accompanied by an increase in the Value-at-Risk portfolio. 

 Efficient portfolios lie along the line with risk tolerance of 0 7.377  , as given by the graph 

of the surface efficiently (efficient frontier) in Figure-1. The curve is the collection of pairs of points 

( t , tVaR ) that can be chosen by the investor to invest in a portfolio of 1S , 2S , 3S , 4S  and 5S . Of 

course, each investor should choose one based on preference or risk tolerance level that is believed. 

For the avoidance of risk investors will usually sets the risk tolerance is small, while for investors 

challenger will risk taking a big risk tolerance. Large-size specified risk tolerance, of course, will 

affect the large-size of portfolio expected return obtained. 

 Having obtained a series of efficient portfolios, the next step is determining the 

optimum portfolio composition. Any investor would want the optimum investment portfolio, is a 

portfolio that minimizes risk and maximizes the expected return. Selection of the optimum portfolio 

can be determined based on the composition of the efficient portfolios that generate expected return 

and the Value-at-Risk of portfolio with the largest ratio. 

 Based on the calculation results given in the last column of Table-5, shows that the ratio of 

expected return and VaR the largest portfolio is 0.07807227, or obtained when risk tolerance reaches 

 =6404. The ratio of expected return and VaR continues to increase at intervals of risk tolerance 

0 6.404  and decreased in the interval 6.404 7.377  . Up-and-downs of these ratios can be 

seen graph given in Figure-2. Based on the values in Table-5, obtained the results that based on the 

model of asset allocation mean-VaR, the optimum portfolio composition prepared from the stocks 1S , 

2S , 3S , 4S  and 5S  the portfolio composition with the weight vector T w  (0.1888 0.4090 0.2085 

0.0320 0.1617). Where is the optimum portfolio composition to generate the expected return of 

t =0.001825 with Value-at-Risk of tVaR = 0.0233789. These values of t  and tVaR  can be seen in 

Table-5 line in bold. 

 

4.  Conclusion 
 

 Mathematical of Arbitrage Pricing Theory (APT) model can be expanded into APT with 

lagged. Based on it the estimators of mean, variance and covariance of stock return are formulated. 

The empirical research conducted on five stocks 1S until 5S , and five index factor of 1F until 5F . 

Where return of the index factors in the APT with lagged analyzed using ARFIMA-GARCH model 

approach. Based on the analysis that the three index return factor, namely 1F ,  2F  and 4F  there are 

significant effects of long memory. Parameters estimator of mean, variance and covariance, then used 

for the analysis of asset allocation problem based on the mean-VaR model. Based on the results of 

optimization, efficient portfolios are formed for the values of risk tolerance 0 7.377  . An 

optimum occurs in the value of portfolio risk tolerance 6.404  . Optimum portfolio has composition 

allocation weight of  0.1888 0.4090 0.2085 0.0320 0.1617T w , with a mean portfolio return of 

t =0.001825 and Value-at-Risk of tVaR =0.0233789. 
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