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Abstract :This work is carried out to model jointly time delay and unknown disturbances of gelatinised sago 

starch to solvent production by C. acetobutylicum P262. The proposed model of C. acetobutylicum P262 

proliferation is formulated as stochastic delay logistic model. Moreover, Luedeking-Piret equations were used to 

model the solvent production of acetone and butanol by C. acetobutylicum P262, whose number of living cell, 

)(tx is subjected to time delay and beyond deterministic behaviour. The strong solution of the resulting models 

was simulated numerically via numerical method of Euler-Maruyama (EM). Their respective root mean square 

errors (RMSE) were calculated by comparing the simulated and experimental data so that the prediction quality 

of the model can be assessed.  

 

Abstrak :Penyelidikan ini dijalankan bagi memodelkan lengahan masa dan hingar rawak yang terdapat dalam 

proses penghasilan pelarut oleh C. acetobutylicum P262. Model yang dicadangkan bagi mengkaji kadar 

pertumbuhan sel C. acetobutylicum P262 adalah stokastik logistic model yang melibatkan masa lengahan. 

Persamaan Luedeking-Piret digunakan untuk memodelkan pembentukan pelarut acetondanbutanol oleh C. 

acetobutylicum P262. Kepekatan sel hidup, )(tx tertakluk kepada masa lengahan dan bukan lagi tertentu. 

Penyelesaian hampiran bagi model tersebut dihitung menggunakan kaedah berangka Euler-Maruyama (EM). 

Ralat min punca kuasadua dihitung bagi menentukan kepersisan model yang dibentuk. 

 

 

Keywords:Stochastic delay differential equations (SDDEs), Delay Differential Equations (DDEs), Stochastic 

Ordinary Differential Equations (SODEs), Euler-Maruyama (EM). 

 

 

1. Introduction  

 
Modelling of physical phenomena and biological system using ordinary differential equations 

(ODEs) and stochastic ordinary differential equations (SODEs) has become an intensive research over 

last few years. In both types of equations the unknown function and its derivatives are evaluated at the 

same instant time, t. However, it was generally acknowledge that many of the natural phenomena 

around us do not have an immediate effect from the moment of their occurrence. For instance, the 

growth of the microbe is not instantaneous but responds only after some time lag, 0 . In such 

cases, ODEs and SODEs which are simply depending on the present state are inadequate to describe 

the process that involves time delay. The modelling of such phenomena, leading to what is called 

delay differential equations (DDEs) and stochastic delay differential equations (SDDEs). Indeed, 

DDEs are unsatisfactory to model the process with the presence of random effects. Definitely the 

dynamical systems whose evolution in time is governed by uncontrolled fluctuationsas well as the 

unknown function is depending on its past history can often be modelled via SDDEs. 
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Our main concern in this paper is to model jointly time delay and unknown disturbances of 

gelatinised sago starch to solvent production by C.acetobutylicumP262 of batch process. In typical 

batch fermentation, there are two important features that control the mechanism of the process namely 

time delays and the system is continually subjected to the effects of random or uncontrolled 

fluctuations which are referred as noise. The presence of time delay is a consequence of the simple 

fact that initially, microbial are in the process of adapting themselves to the new environment, thus no 

growth occur. They are in the situation to synthesis the new enzymes in response to change in the 

availability of substitutable substrates [2]. The microbe in this position is said to be in a lag phase. At 

the end of the lag phase, the population of microorganisms is well-adjusted to the new environment, 

cells multiply rapidly and cell mass doubles regularly with time. Microbe subsequently enters a period 

called an exponential phase. As time evolves, the system is subjected to an intrinsic variability of the 

competing within species and deviations from exponential growth arise. It happens as a result of the 

nutrient level and toxinconcentration achieves a value which unable to sustain the maximum growth 

rate. This phase is recognized as a stationary phase. By taking into account all the phases involve in 

batch fermentation, modellers should aware that mathematical models for the dynamic of this process 

take the form of SDDEs. In many problems, analytical solution for SDDEs is not available and 

numerical methods provide a suitable way to approximate their solutions. In the present article,the 

strong solution of the proposed model is approximated via EM method. It was [4] who proposed a 

numerical method of EM for SDDE. This method has order of convergence of 0.5, yet it is the 

simplest to be implemented in C. 

 

This paper is organized as follows; Section 2.0 reviewed the latest mathematical model of 

ODEs, DDEs and SODEs used to describe the cell growth and solvent production of batch 

fermentation. Then, we incorporate a slow microbial adaptation and unknown disturbances of the 

system via SDDE model. A description of numerical methods and numerical algorithm for SDDEs is 

carried out in Section 3.0. We present the values of kinetic parameter model in Section 4.0 and the 

results of solvent production by C. acetobutylicumP262 are demonstrated. Lastly, the root mean 

square error (RMSE) is computed in order to assess the validity of the stochastic model with time lag. 

 

2.  Reviews on Mathematical Modelling of Cell Growth & Solvent Production 

 
 The classical logistic ODE used to describe the cell growth of C. acetobutylicum P262 is given 

below  

    

],[),(
)(

1
)(

max

max Tttx
x

tx

dt

tdx
 








  (1) 

The constant maxx  denotes the maximum cell concentration (g/L), max  correspond to maximum 

specific growth rate (h-1) and T  is the terminal point of time )(h . In natural environment  maxx  is 

limiting population determined by carrying capacity of the environment. This model has been used by 

[18] to model the cell growth of C. acetobutylicum in batch system. The production of acetone and 

butanol were formulated as Luedeking-Piret equation of 

Acetone:  xb
dt

dx
a

dt

dA









   (2)

       

Butanol:  xe
dt

dx
c

dt

dB









   (3) 

where 

  x concentration of cell mass (g/L), 

  A = acetone concentration (g/L) 

  a = growth associated coefficient for acetone formation (g substrate/g cell) 

  b = non-growth associated coefficient for acetone formation (g substrate/g cell) 

  B = butanol concentration (g/L) 
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  c = growth associated coefficient for butanol formation (g substrate/g cell) 

  e = non-growth associated coefficient for butanol formation (g substrate/g cell) 

 
The differential equations (1), (2) and (3) had been used to model the solvent production by C. 

acetobutylicum in [9]. As aforementioned in [9], the production of acetone and butanol was non-

growth associated system. Therefore, the values of growth associated coefficient for product 

formation was zero. The exact solution of (1) and Luedeking-Piret equations of (2) and (3) can be 

written in the following form 

 

 

 

Cell growth: 
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       (4) 

Product formation 

Acetone: 

t

t

dssxbtAtA

0

)()()( 0        (5)

  

Butanol: 

t

t

dssxetBtB

0

)()()( 0        (6)

  

where )(),( 000 tAtxx  and )( 0tB  represent the initial cell, acetone and butanol concentration 

respectively.  It is reasonable to model the cell growth via DDEs by assumption that initially cells are 

inactive and once it is activated the cell division is not instantaneous [3]. Early attempt to model the 

population growth using logistic DDE has been made in [6]. He proposed a classical delay logistic 

model by assuming biological self-regulatory reaction represented by the factor 
max

)(
1

x

tx
  in (1) is not 

instantaneous but responds only after some time lag, 0 . The original motivation of [6] by 

introducing time delay in classical logistic ODE is to model the oscillations observed in Daphnia 

populations, on the ground that fertility of the pathogenetic female influenced by the density of past 

population. An obvious distinction between DDEs and ODEs is in specifying the initial value, )( 0tx . 

For DDE, it is not enough to determine the solution for 0t  by having )( 0tx  alone. We need to have 

initial function, to specify the history of )(tx for ]0,[ t . Thus, the corresponding classical 

logistic DDE of (1) is  
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  (7) 

 The time delay  models the length of the time period between the initial time and maturing 

time wherein the division of the cell begins. The presence of internal and external noise in batch 

system ultimately linked with the theory of SODEs. The deterministic model of (1) and (7) do not 

accommodate random variations of metabolism. An alternative stochastic model would result from 

the hypothesis that the process itself is not smooth. The cell growth of C. acetobutylicum P262 is 

subjected to a variety of internal and external influences, which change over time. Therefore, it is 

necessary to add suitable system variability to the deterministic model (1). In [1] the parameter 
max

max

x


 

is allowed to vary randomly by introducing a white noise perturbation that is 
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  ,
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dt

tdW
bb         (8) 

where 
max

max

x
b


 ,   is a diffusion coefficient and )(tW is a one dimensional stochastic process  

having scalar Wiener process components that is the increment )()()( tWttWtW   are 

independent Gaussian random variables with mean zero and variance the increment of the time, t . 

Model (1) with perturbation (8) is an Itô SODE of the following 
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or more accurately as an integral equation 
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 The second integral in (6) is stochastic integral with respect to a Wiener process, )(tW . The 

Wiener process is nowhere differentiable and its continuous sample path are not bounded variation. 

So, it cannot be interpreted as Riemann-Stieltjes integral. The stochastic integrals can be interpreting 

either as Itô or Stratonovich integral depending on the evaluation points of the integrand. Model (9) is 

formulated in [13] to model cell proliferation of the microbe in batch fermentation. The strong 

solution of SODE (9) was approximated using EM. Model (9) can be transformed into Stratonovich 

form and vice-versa by means of the following formula 

).,(),(
2

1
),(),( tttt xt

x

g
xtgxtfxtf




       (11) 

where ),( txtf is drift coefficient and ),( txtg is known as diffusion coefficient. By employing (11) to 

drift coefficient in (9) we obtain the stochastic model in Stratonovich form of 
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or in the integral form 
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1)(
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 The symbol   is used to indicate the Stratonovich SODE (i.e. )(tdW ). SODE (12) has been 

formulated in [17] to model the cell growth in batch culture and the strong solution of SODE is 

simulated via SRK2. In the acetone-butanol biosynthesis process by C. acetobutylicum P262, a more 

sophisticated insight into physical phenomena may be achieved if we consider problems with both 

time-lag and assume that the observed biological system operate in noisy environment. In such a case, 

it is practical to model the cell division in batch culture via SDDE. Therefore, the model we derive in 

the present article is in the form of (13) with random perturbation to 
max

max

x


. It means that, the 

mathematical model of SDDE is formulated to describe the cell growth of C. acetobutylicumP262. 

SDDE can be approached either as SODE with added delay or DDE with noise [14]. The second 

approach shall be considered here. We assume that our model is in autonomous form. Therefore, a 

general formulation of autonomous SDDE is  

 
0,],[),()(

],[),())(),(())(),(()(
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TttdWtxtxgdttxtxftdx 
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or in integral form it can formulated rigorously as 
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  (15) 

where RRRf :  and RRRg : . The functions gf and need to satisfy the local Lipchitz 

condition and linear growth condition in order to ensure the existence and uniqueness solution [11]. In 

applied problems the initial function, )(t for 0 t  is found experimentally and also may be 

 

 

 

determined from another equation without deviating argument. For our purpose )(t  is determined 

experimentally. Let we have the delay logistic equation of (13) in the form of 

         Tttxtxx
x

tx ,,' max
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       (16)  

Then, perturbation through parameter 
 

dt

tdW

xx





max

max

max

max , leading to the following differential 

equation 
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)(

1)(
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max tdWtxtxdttx
x

tx
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     (17) 

 

Thus, a simplified batch fermentation kinetic model for cell growth of C. acetobutylicumP262 is in the 

form of (17). The mathematical model of solvent production in terms of )(tx are given as below 

  Acetone )(txb
dt

dA
   (18) 

 Butanol  )(txd
dt

dB
         (19) 

  

where )(tx is subjected to time delay and no longer deterministic. Kinetic parameter model of 

db,,max and need to be estimated.  

  

3. Euler-Maruyama Scheme and Numerical Coding 

 

 We have considered strong Euler-Maruyama approximations with a fixed step size, h on the 

interval ],0[ T , for Nnhnt
N

T
h n ,,1,)1(,  . We assumed that, there is an integer 

number N  such that the delay can be expressed in terms of the step size hN   . For SDDE (14), 

the Euler-Maruyama scheme has the following form 

 )))((),(())(),(()()( 1 nnnnnnn Wtxtxgtxtxbhtxtx      (20) 

with ),()( 1 nnn tWtWW    denoting independent ),0( hN distributed Gaussian random 

variables. The Euler discretization for the process given in (17) looks like 

 )()(1)()(
max

max1 nNnnn

Nn

nn Wxxhtx
x

x
txtx 










 



 

      (21) 

We generate a code to simulate the solution of discretization process (15) using the language of C. 

The resulting algorithm is presented below; 
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1) Define the fixed step size, Nnhnt
N

T
h n ,,1,)1(,   

2) Define an integer number N  such that the delay can be expressed in terms of the step size 

hN   . 

3) Define the step, such as the end of the step is 


T
. 

4) Do initial function evaluation ])1][([  nstep  at the initial interval ]0,[ t . It is needed 

for the first EM step. Print the solution ])1][([)(  nsteptx for ]0,[ t . 

5) Do drift function evaluation. If 1step , the drift function is 

])1][[],1][[(  nstepnstepyf  else the drift function is computed as

))1][([],1][[( Nnstepynstepyf  . 

6) Do diffusion function evaluation, ])1][[( nstepyg . 

7) Perform a random number generator, randn. 

8) If 1step  and for  nNnn ;;1  , perform an explicit EM step,

])1][[(**

)]1][[],1][[(]1][[]][[





nstepygrandnh

nstepnstepyfhnstepnstepy
 

9) If ,3,2step  and for  nNnn ;;1  , perform an explicit EM step,

])1][[(**

)])1][([],1][[(])1][([]][[





nstepygrandnh

NnstepynstepyfhNnstepynstepy 
 

10) Print the solution, ]][[ nstepy . 

 

In 1step , the history of )()( ttx  for ]0,[ t  is used to compute the strong solution of )(tx

for ],0[ t . Meanwhile, the numerical solution in ,3,2step  is computed iteratively using 

method of steps. Once the numerical solution of )(tx for ],0[ t  is known, we can proceed this 

argument to simulate the strong solution of )(tx for ]3,2[],2,[ t and so on. 

 

4. Results and Discussion 

 
  Three sets data of cell growth of C. acetobutylicum P262 were observed in [9] at ]288,0[t , 

where t is a time measured in hour. The experiment was carried out to investigate the effect of 

different inorganic nitrogen source to yeast extract, YE. YE1, YE2 and YE3 represent the control 

medium (no inorganic source), medium with Ammonium Chloride (NH4CL) and medium with 

Ammonium Nitrate (NH4NO3) respectively. For ODE (1) the kinetic parameter of db and,max  

were estimated using Levenberg Marquardt algorithm [9], while for SDE (12) the values of 
max and 

  were estimated using Levenberg Marquardt algorithm in [6] respectively, whereas b and d were 

approximated using Simplex method in [17]. The estimation parameters in SDDEs are very infancy. 

  The method up to date only considered the SDDEs where their respective diffusion 

coefficient is in unitary form, means that in the form of additive noise. In the present article, due to 

the small value of time lag,  , the estimated values of 
max and   in SDDE (27) is based on SDE 

(12). The kinetic parameter models b and d for Luedeking-Piret equation (18) and (19) were estimated 

using Simplex method. The initial values of )(),(),( 000 tBtAtx  and the maximum cell concentration, 

maxx were observed from the experimental data [9]. The initial values of )(),(),( 000 tBtAtx  are 

given in Table 1. 
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Table 1. Initial values of )(),(),( 000 tBtAtx for YE1, YE2 and YE3 

Initial values  YE1 YE2 YE3 

)/()( 0 Lgtx  0.0031 0.002 0.0025 

cell)g/substrate(g)( 0tA  0.068 0.02096 0.02799 

cell)g/substrate(g)( 0tB  0 0 0 

 

The estimated values of kinetic parameter for YE1, YE2 and YE3 are presented below. 

 
Table 2.Estimated Parameters for Equations (1), (12) and (17) 

Model Experimental Data  
Parameter Estimation 

)(ˆ 1

max

h
 

)/(ˆ
max Lgx

 
̂  a


 b̂  

ODE (1) 

YE1 0.4 3.525 - 0.025 0.082 

YE2 0.7 0.9490 - 0.025 0.082 

YE3 0.55 4.295 - 0.025 0.082 

SDE (12) 

YE1 0.4848 3.525 0.0028 0.2596 0.1076 

YE2 0.5056 0.9490 0.0127 0.0072 0.0414 

YE3 0.6354 4.295 0.0052 0.2431 0.0835 

SDDE (17) 

YE1 0.4848 3.525 0.0028 0.2529 0.1046 

YE2 0.5056 0.9490 0.0127    0.0077 0.0430 

YE3 0.6354 4.295 0.0052 0.2613 0.0872 

 

The results of SDE (12) and SDDE (17) together with their experimental data for YE1, YE2 and YE3 

were presented in Figure 1a), Figure 1b) and Figure 1c) respectively.  

 

 

 
Figure 1a): Results of cell growth approximated via EM for SDE (12), SDDE (17) and experimental data of YE1. 
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Figure 1b): Results of cell growth approximated via EM for SDE (12), SDDE (17) and experimental data of YE2. 

 

 

 
Figure 1c): Results of cell growth approximated via EM for SDE (12), SDDE (17) and experimental data of YE3. 
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based on SDDE were employed. The results of Luedeking-Piret equation for Acetone concentration 

whose )(tx  was described by ODE (1), SDE (12) and SDDE (17) together with their experimental 

data for YE1, YE2 and YE3 were presented in Figure 2a), Figure 2b) and Figure 2c) respectively.  

 

 
Figure 2a): Results of acetone concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE1. 

 

 
Figure 2b): Results of acetone concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE2. 
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Figure 2c): Results of acetone concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE3. 

 

 

Meanwhile, the results of Luedeking-Piret equation for Butanol concentration whose )(tx was 

described by ODE (1), SDE (12) and SDDE (17) together with their experimental data for YE1, YE2 

and YE3 were demonstrated in Figure 3a), Figure 3b) and Figure 3c) respectively.  

 

 

Figure 3a: Results of butanol concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE1. 
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Figure 3b): Results of butanol concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE2. 

 

 
Figure 3c): Results of butanol concentration using deterministic model, stochastic model, stochastic model with after-effect 

and experimental data for YE3. 
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The prediction quality of the models can be assessed by using root mean square error (RMSE) 

 n

xy

RMSE

n

i

ii




 1

2)(

 (22) 

where iy is the experimental data and ix is the predicted solution. The obtained RMSE for YE1, YE2, 

and YE3 are shown in Table 3.  

 
Table 3. RMSE for YE1, YE2 and YE3 

Strain and Solvent 

Production 
Mathematical Model 

 RMSE  

YE1 YE2 YE3 

Cell Growth of  

C.acetobutylicum P262 

 

Stochastic logistic with time delay (17) 

 
0.4352 0.0901 0.4160 

Stochastic logistic equation (12) 

 
0.4451  0.0900  0. 4263 

Logistic equation (1) 0.5483 

 

0.1058 

 
0.5420  

 Acetone Luedeking-Piret equation (18) 

0.1852 0.03807 0.2051 

0.2042 0.0666 0.2859 

1.1262  0.6051  3.4364 

Butanol Luedeking-Piret equation (19) 

0.1637 0.00542 0.1807 

0.8401 0.0447 0.4540  

3.4007 2.0022 9.4259 

 
 It can be seen that the numerical solution of stochastic logistic models with time delay 

describe the experimental data more adequately as indicated by low values of RMSE for YE1 and 

YE3, and almost same for YE2. Since the cell growth of C. acetobutylicum P262 is subjected to time 

delay and no longer deterministic, the production of acetone and butanol shall be described by 

stochastic delay logistic model and Luedeking-piret equation, indicating that )(tx in (18) and (19) is a 

stochastic process. We can see that, the simulated data according to the models (18) and (19) for YE1, 

YE2 and YE3 fitted well to the experimental data as shown in Figure 2a)-Figure 2c) and Figure 3a)-

Figure 3c). Furthermore, RMSE of product formation for acetone and butanol as presented in Table 3 

are much smaller than deterministic model, thus indicates that stochastic delay Luedeking-piret 

equation is more adequate to describe the solvent production by C. acetobutylicumP262. 

 

5. Conclusion 

 
 The models based on logistic and Luedeking-Piret equation were inadequate to describe direct 

fermentation of sago starch to solvent by C. acetobutylicum P262 [7]. Moreover, from the value of 

RMSE provided in Table 3, we can conclude that the stochastic logistic and Luedeking-Piret 

equations are insufficient to describe the fermentation process considered here. However, this process 

can be described adequately via stochastic logistic and Luedeking-Piret equations with time delay. 

Thus, in this paper we were used stochastic logistic with time delay and Luedeking-Piret equations 

equipped with EM and found that the resulting model describes the experimental data more 

adequately than its deterministic and ordinary stochastic counterpart.  
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